Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase
نویسندگان
چکیده
Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity.
منابع مشابه
The effect of arsenic and sodium nitroprusside on the physiological responses and antioxidant enzymes activity of Isatis cappadocica
Arsenic (As) stress, through the creation of oxidative stress, can cause phytotoxicity (e.g. The decrease of growth and chlorophyll content) in plants. Nitric oxide (NO), by promotion of the antioxidant system, plays an important role in reducing heavy metal-induced oxidative stress. In this study, the role of exogenously applied sodium nitroprusside (SNP; a NO donor) on physiological responses...
متن کاملInvestigating the rate of glutathione S-transferase T1 and M1 genes deletion in patients with lung cancer
Introduction: Glutathione S-tarnsferases (GST) gene family is one of the enzymes which is responsible for detoxifying mutagens and Carcinogens chemicals. People with null genotype of GSTM1 and GSTT1 genes are at higher risk of developing cancer, especially those who are related to smoking. The goal of this study was investigating the rate of glutathione S-transferase T1 and M1 genes deletion an...
متن کاملProteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle's loop (TALH) cells.
Epithelial cells of the thick ascending limb of Henle's loop (TALH cells) play a major role in the urinary concentrating mechanism. They are normally exposed to variable and often very high osmotic stress, which is particularly due to high sodium and chloride reabsorption and very low water permeability of the luminal membrane. It is already established that elevation of the activity of aldose ...
متن کاملDiphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice
BACKGROUND & OBJECTIVES Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethy...
متن کاملAlterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain.
Adriamycin (ADR) is a chemotherapeutic for the treatment of solid tumors. This quinone-containing anthracycline is well known to produce large amounts of reactive oxygen species (ROS) in vivo. A common complaint of patients undergoing long-term treatment with ADR is somnolence, often referred to as "chemobrain." While ADR itself does not cross the blood brain barrier (BBB), we recently showed t...
متن کامل